Table of contents
Volume 4, Issue 1, pp. 1 - , January 2020
Cover: This month in
Cell Stress: The multifaceted role of fatty acids in cellular pathologies. Cover depicts microscopic image of beef fat. Public domain image from "Practical physiological chemistry; a book designed for use in courses in practical physiological chemistry in schools of medicine and of science" (1916) Modified by
Cell Stress. The cover is published under the
CC BY 4.0 license.
Enlarge issue cover
Necroptosis, tumor necrosis and tumorigenesis
Zheng-gang Liu and Delong Jiao
Viewpoint |
page 1-8 | 10.15698/cst2020.01.208 | Full text | PDF |
Abstract
Necroptosis, known as programmed necrosis, is a form of caspase-independent, finely regulated cell death with necrotic morphology. Tumor necrosis, foci of necrotic cell death, occurs in advanced solid tumors and is often associated with poor prognosis of cancer patients. While it is well documented that apoptosis plays a key role in tumor regression and the inactivation of apoptosis is pivotal to tumor development, the role of necroptosis in tumorigenesis is still not fully understood as recent studies have reported both tumor-promoting and tumor-suppressing effects of necroptosis. In this short review, we will discuss some recent studies about the role of necroptosis in tumorigenesis and speculate the implications of these findings in future research and potential novel cancer therapy targeting necroptosis.
Fatty acids – from energy substrates to key regulators of cell survival, proliferation and effector function
Danilo Cucchi, Dolores Camacho-Muñoz, Michelangelo Certo, Valentina Pucino, Anna Nicolaou and Claudio Mauro
Reviews |
page 9-23 | 10.15698/cst2020.01.209 | Full text | PDF |
Abstract
Recent advances in immunology and cancer research show that fatty acids, their metabolism and their sensing have a crucial role in the biology of many different cell types. Indeed, they are able to affect cellular behaviour with great implications for pathophysiology. Both the catabolic and anabolic pathways of fatty acids present us with a number of enzymes, receptors and agonists/antagonists that are potential therapeutic targets, some of which have already been successfully pursued. Fatty acids can affect the differentiation of immune cells, particularly T cells, as well as their activation and function, with important consequences for the balance between anti- and pro-inflammatory signals in immune diseases, such as rheumatoid arthritis, psoriasis, diabetes, obesity and cardiovascular conditions. In the context of cancer biology, fatty acids mainly provide substrates for energy production, which is of crucial importance to meet the energy demands of these highly proliferating cells. Fatty acids can also be involved in a broader transcriptional programme as they trigger signals necessary for tumorigenesis and can confer to cancer cells the ability to migrate and generate distant metastasis. For these reasons, the study of fatty acids represents a new research direction that can generate detailed insight and provide novel tools for the understanding of immune and cancer cell biology, and, more importantly, support the development of novel, efficient and fine-tuned clinical interventions. Here, we review the recent literature focusing on the involvement of fatty acids in the biology of immune cells, with emphasis on T cells, and cancer cells, from sensing and binding, to metabolism and downstream effects in cell signalling.
Kynurenine: an oncometabolite in colon cancer
Niranjan Venkateswaran and Maralice Conacci-Sorrell
Microreviews |
page 24-26 | 10.15698/cst2020.01.210 | Full text | PDF |
Abstract
Tryptophan is one of the eight essential amino acids that must be obtained from the diet. Interestingly, tryptophan is the least abundant amino acid in most proteins, a large portion of cellular tryptophan is converted into metabolites of the serotonin and kynurenine pathways. In a recent study, (Venkateswaran, Lafita-Navarro et al., 2019, Genes Dev), we discovered that colon cancer cells display greater uptake and processing of tryptophan than normal colonic cells and tissues. This process is mediated by the oncogenic transcription factor MYC that promotes the expression of the tryptophan importers SLC1A5 and SLC7A5 and the tryptophan metabolizing enzyme AFMID. The metabolism of tryptophan in colon cancer cells generates kynurenine, a biologically active metabolite necessary to maintain continuous cell proliferation. Our results indicate that kynurenine functions as an oncometabolite, at least in part, by activating the transcription factor AHR, which then regulates growth promoting genes in cancer cells. We propose that blocking kynurenine production or activity can be an efficient approach to specifically limit the growth of colon cancer cells. Here, we describe our findings and new questions for future studies targeted at understanding AHR-independent function of kynurenine, as well as interfering with the enzyme AFMID as a new strategy to target the kynurenine pathway.